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Synopsis 

A class of viscoelastic materials is defined by the parametric constitutive equations u = u(e,t) 
and T = T(e,t) .  It is shown that the creep rates and relaxation rates of such materials are 
determined by their thermal properties and the ambient temperature, and that the assumptions 
of constant stress or strain respectively and constant temperature are incompatible. 

The straining of solids in the elastic range is not accompanied by any sensible 
development of heat, but plastic and other deformations involving hysteresis or 
any other forms of nonreversibility are always accompanied by considerable 
rises of temperature. High polymers which neck down to smaller cross sections 
in the manner described as “cold drawing” can reach high temperatures a t  the 
shoulders of the “neck,” temperature differences of 80°C having been estimated 
for amorphous poly(ethy1ene terephthalate). Similar effects in crystalline poly- 
mers such as gutta-percha, nylon, and polyethylene are well known. The heating 
of metals during plastic deformation is equally well known in other fields of 
study. 

Because nonelastic deformations involve loss of mechanical energy, these must 
always result in the development of heat. If the heat is alIowcd to raise the 
temperature of the material being strained, a greater or smaller change will be 
apparent in its mechanical properties, depending upon the temperature sensitiv- 
ity of these properties in the material in question. Thus, at a temperature in the 
vicinity of the glass transition point, very considerable changes may be expected 
if isothermal conditions are not maintained. Marshall and Thompson* have 
shown, for example, that poly(ethy1ene terephthaIate), extended adiabatically 
from 20”C, behaves rather as though i t  were extended isothermally at 80°C once 
an extension ratio of 4 was reached. Jones and Beeson2 showed that rubber, 
stretched isothermally, is stronger than when it is stretched adiabatically, and 
that the difference can be ascribed to  a temperature rise of up to 10°C which was 
observed by other workers between these two modes of stretching. 

It is, therefore, of general interest to study the coupling between the two pro- 
cesses of deformation and heating. This has previously been studied by a num- 
ber of authors including Zener,3 Biot14 and G r ~ n t f e s t , ~  but i t  is felt that the fol- 
lowing considerations throw additional light on the subject. 
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At this stage, the constitutive equations of the anelastic materials being de- 
formed are not defined except insofar as they represent a state of quasi-equilib- 
rium, u = u(e,T,t). It is assumed that for such materials, the stresses developed 
in any mode of straining may be parameterized and written as u = u(e,t), while at 
the same time the temperature attained is also a function of the strain and elapsed 
time; thus, T = T(e,t), which depends also on ambient conditions. Graphs of 
u = u(e,t), such as that given by Turner,& are known in the literature, but these 
are not considered by him in conjunction with any imposed or resultant constant 
temperature field. 

In  order that u = u(e,t) may be single valued, (compare Bridgeman*), a 
limitation is here imposed such that the stress is attained by first applying the 
strain or the inwement of strain, always in the same way, e.g., by means of a 
step function or ramp function, followed by a period of relaxation however short. 
The stress and temperature functions taken simulta?zeously are proposed as con- 
stitutive assumptions for a class of viscoelastic materials with straining and re- 
laxation in the sequence stated. What follows is, therefore, applied only to 
materials behaving in this way. 

In  a simple tensile experiment, the total differentials of stress and temperature 
may then be written as 

du = (E) t  dr + ($) dt 
f 

and 

dT = (g), de + (g) dt. 
6 

Now, by definition, (an/&), is the isochronous modulus, or Young’s modulus El 
in the tensile mode. In  other modes of deformation, the relevant moduli will 
be used. At t = 0, Et, will be an “instantaneous” or “zero” modulus, and at t = 03 , 
it will be the equilibrium modulus. We write 

(du/be),  = E (3) 

(4) 

and define 

(du/bt), = - r  = relaxation rate 

and 
(bT/bt) ,  = -e = cooling rate. (5 )  

e is a function of the thermal insulation applied and the diffusivity of the mate- 
rial, and of the geometry of the specimen, since an internal material point cannot 
cool down at the same rate as a point on the surface. 

At constant stress, du  = 0, and eq. (1) leads to 

du = -rdt + Ede = 0 ( 1 4  
or 

(be/&), = r / E  

and by substitution into eq. (2) we obtain 

(bT/b€)u = (bT/br) + (bT/bt),(bt/be),. (7) 
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Since (dr /dT) ,  = a, the coefficient of linear expansion, we have 

from which 

Similarly, we obtain 

and 

If these are compared with eqs. (6) and (4), respectively, i t  will be seen that the 
creep rate a t  constant temperature is smaller than that at constant stress. Sim- 
ilarly, the relaxation rate a t  constant temperature is smaller than it is a t  constant 
strain. Note that if r = 0, that is, the material has no relaxation under given 
strain, i t  will not creep under a given load. 

However, it should 
be understood that, if as a result of a relaxation process a t  constant strain a 
change of temperature takes place, this will affect the stress directly by counter- 
acting the tendency to  expand or contract. 

If, in a second experiment, these changes are allowed to  proceed in thermal isola- 
tion from the surroundings, we have 

These statements may not appear reasonable a t  first sight. 

dQ = ude - pdT = 0 (12) 

where p is the heat capacity per unit volume. 
(12) and (1) and (2), we obtain the following expressions: 

Operating as before between eqs. 

the signs indicating that in an adiabatic experiment, the temperature rises as 
would be expected: 

r ua Orpa 

E p  EOpa - ura 4- p r  

(15) 
- r 2 ( p  - ua) (9), = r ( 7  - 1) = EOpa - ura + pr 

from which we have 

EQ = (%>, = ;(: - a) = E(l - &). 
The adiabatic creep and relaxation in eqs. (14) and (15) are essentially dif- 

ferent from those for the isothermal condition given in (6) and (4), in that the 
former depend explicitly upon the stress. 
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It is instructive and illuminating to compare the creep rates and relaxation 
rates for a simple material such as a Maxwell solid. In describing the behavior 
of such a solid, Maxwell' specified a material which relaxes at  a rate proportional 
to the stress, but he made no mention of the thermal conditions under which the 
relaxation takes place. We assume that relaxation takes place at constant strain 
and that the rate of cooling is proportional to the temperature difference between 
the actual temperature of the sample ( T )  and the ambient (To), i.e., 6 = b(T - 
To). The coefficient b, therefore, measures the efficiency of heat removal in a 
very thin sample, or the diffusivity in a thick sample, or a combination of both. 
We, therefore, have (the superscript M indicating a Maxwell body) 

($); = -- U 

T 

($); = --. U 1 U U . (17~) = --. 
1 + Eae.rp/u(p - ua) T Earbp(T - To) 

p - ua a +  

In the order given, these three expressions with T > To and u < p / a  form a 
series of decreasing relaxation rates. It is instructive to note that when either 
an isothermal test or an adiabatic test is commenced with the sample maintained 
at  ambient temperature throughout, the relaxation rates observed will be iden- 
tical with that obtained at constant extension. However, this is a physical 

' impossibility since a finite sample cannot cool on its surface at  the same rate as at 
an internal point, and therefore a Maxwell body and, by extension, any visco- 
elastic body cannot relax a t  coiwtant strain and constant temperature at the 
same time. If u > p/m,  the adiabatic relaxation rate becomes larger than the 
isothermal or constant-strain relaxation rate. 

Also, for creep, 

1 
(184 

M u  

o1 

(E) =-.  
ET 1 + ~ ( p  - ua)/EaOpr' 

It is important to note that under isothermal or adiabatic conditions, neither 
the relaxation rate nor the creep rate is proportional to the stress. It follows 
that the superposition principle cannot be invoked under these conditions. 

As an example of the effects to be expected, the following figures have been 
calculated, using data from published tables for a commercial co(polyacetal),s we 
have, at a tensile stress of 100 kg/cm2, 

p = 0.25 c~I/"C*CC 

a = 10-4/0c 

E = 21000 kg/cm2 
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and assuming that the material behaves as a Maxwell body, 

fore = 10°C/hr 

- 241 . 5  kg/cmP. hr 

for 8 = 20°C/hr 

- 241 .5 kg/cm2. hr (')c 

(g) -205 kg/cm2 - hr - 222 kg/cm2 - hr 
T 

(g) -191 kg/cm2.hr -206 kg/cm2- hr 
Q 
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